Raman microscope

Features

Molecular structure via vibrational spectrum

Low-invasiveness

no requirement for sample treatment

Dry and Wet condition

visible light is used for observation

Label-free

applicable to difficult-to-stain sample

Wavelength tunability

405 nm	532 nm	780 nm
High	Intensity/Resolution	Low
High	Invasiveness	Low
Res	sonant Raman scatter	ring

Principle of Raman scattering

Observation of wavelength shift originated from the interaction between light and molecular vibration

Home-built multimodal microscope

Multifunctional spectroscopic microscope Concept: that can be "modified" to meet your needs

Fundamental specifications

Microscope:	Inverted microscope-based system
	with laser-scan / stage-scan system
	LED light (UV, B, G), Phase contrast
Ex. Light:	CW~532~nm (473, 633, 785 nm will be available in the future)
	Pulsed femtosecond laser 785 nm
Functions:	Spectrometer (Reflection configuration)
	Photomultiplier tube (Transmission configuration)
	Spot detection / Spot scanning imaging
Resolution :	ca. 500 nm (XY), 1,000 nm (Z)
Other:	Can be modified as request

What can do?

Raman spectroscopic imaging

Label-free analysis of molecular distribution and molecular structure

Measurement with a spectrometer (reflection arrangement) Imaging duration: 5–30 min/image, 1–10 s/point

Second-harmonic generation (SHG) imaging

Collagen orientation and maturity, the crystallinity of molecules, etc.

Measurement with spectrometer (reflection configuration) or PMT (transmission configuration) Imaging duration: 10 s–1 min

• Fluorescence imaging with LED light source

Fluorescence observation of stained tissue/cells Measurement with sCMOS camera (reflection configuration) Light source: UV, B, G excitation Imaging duration: 0.1–10 s

Laser scanning fluorescence spectroscopic imaging

Fluorescence observation of stained tissue/cells Measurement with a spectrometer (reflection configuration) Imaging duration: 1–10 s

Multiphoton fluorescence spectroscopic imaging

Fluorescence observation of stained tissues/cells in the deep part of the living body, etc.

Measurement with a spectrometer (reflectance configuration) Imaging time: 10 s–1 min

What Raman microscopes can do

Label-free imaging of functional molecules and tissues e.g. myocardial infarction diagnosis by Raman spectroscopy

Normal

Acute response S. Ohira, <u>T. Minamikawa</u> et al., Sci. Rep. (2017).

Process of MI

N. Muranishi, <u>T. Minamikawa</u> et al., Anal. Chem, (2014). JP Pat. 6103700

Necrosis

Human heart tissue

Old MI T. Yamamoto, <u>T. Minamikawa</u> et al., Sci. Rep. (2018)

Fibrosis

Granulation

Molecular structural analysis of difficult-to-stain molecules

e.g. Lipid Molecular Structure Analysis

e.g. NASH diagnosis

Lipid species (e.g. cholesterol/TAG)

Structures (Unsaturation)

Molecular Spectral Analysis

T. Minamikawa, et al. Sci. Rep, (2020)

